13 research outputs found

    A FORTRAN Program to Model Magnetic Gradient Tensor at High Susceptibility Using Contraction Integral Equation Method

    No full text
    The magnetic gradient tensor provides a powerful tool for detecting magnetic bodies because of its ability to emphasize detailed features of the magnetic anomalies. To interpret field measurements obtained by magnetic gradiometry, the forward calculation of magnetic gradient fields is always necessary. In this paper, we present a contraction integral equation method to simulate the gradient fields produced by 3-D magnetic bodies of arbitrary shapes and high susceptibilities. The method employs rectangular prisms to approximate the source region with the assumption that the magnetization in each element is homogeneous. The gradient fields are first solved in the Fourier domain and then transformed into the spatial domain by 2-D Gauss-FFT. This calculation is performed iteratively until the required accuracy is reached. The convergence of the iterative procedure is ensured by a contraction operator. To facilitate application, we introduce a FORTRAN program to implement the algorithm. This program is intended for users who show interests in 3D magnetic modeling at high susceptibility. The performance of the program, including its computational accuracy, efficiency and convergence behavior, is tested by several models. Numerical results show that the code is computationally accurate and efficient, and performs well at a wide range of magnetic susceptibilities from 0 SI to 1000 SI. This work, therefore, provides a significant tool for 3D forward modeling of magnetic gradient fields at high susceptibility

    Rare Earth Partition Characteristics and Sedimentary Diagenetic Response in Layered Argillaceous Limestone: Taking the Shale of Upper Es4 in the Nx55 Well Area as an Example

    No full text
    Taking the layered argillaceous limestone in the upper Es4 in the Dongying Sag as the research object, the geochemical analysis of major, trace, and rare earth elements (REEs) established the response relationship between REE distribution characteristics and sedimentary diagenesis. The average values of total light REE (ΣLREE)/total heavy REE (ΣHREE) of micrite calcite and argillaceous laminae are 6.75 and 4.06, respectively. The LREEs and HREEs are differentiated, consistent with the distribution pattern of REEs in the crust. Th and U elements are more enriched in the sediments in the lacustrine sedimentary environment than in the diagenetic calcite veins. In primary sediments (argillaceous clay and micrite calcite laminae), LREEs are more enriched, HREEs are depleted, and Eu shows positive anomaly-enrichment characteristics. The LREEs and HREEs of the sparry calcite veins are lower than those of the original sediment argillaceous clay and micrite calcite, showing characteristics of a negative anomaly depletion. Sparry calcite veins originate from diagenetic fluid crystallization and precipitation and have the characteristics of low Th and U, evident positive anomalies of Sr and Eu, and substantial depletion of La. The distribution patterns of REEs within the four components of the laminated argillaceous sparry limestone reflect the order of REE distribution from primary sediment laminae (argillaceous clay and micrite calcite) to diagenetic laminae (calcite veins). Compared with the North American shale, the four components of the contact surface between the argillaceous and bright crystalline laminae, the micrite calcite, the calcite veins, and the argillaceous laminae all showed weak negative δCe anomalies and positive δEu anomalies. The fractionation degree between LREEs and HREEs reflected by La/Smcn and Gd/Ybcn is in descending order: the interface between the argillaceous lamina and sparry calcite lamina, micritic calcite, calcite vein, and argillaceous lamina. The argillaceous laminar material has the characteristics of basalt REEs, indicating that the terrestrial debris and argillaceous lacustrine shale in the upper Es4 member of the Niuzhuang subsag are primarily derived from the basic extrusive rocks of the Qingtuozi bulge. REE differentiation is most noticeable at the interface between the argillaceous lamina and calcite vein, proving the directionality of REE differentiation from the original sedimentary lamina to the diagenetic lamina. Shale in the study area is primarily deposited below the redox interface of water at a certain depth, and the deposition rate is stable and slow, providing good conditions for preserving organic matter

    32A9, a novel human antibody for designing an immunotoxin and CAR-T cells against glypican-3 in hepatocellular carcinoma

    No full text
    BACKGROUND: Treatment of hepatocellular carcinoma (HCC) using antibody-based targeted therapies, such as antibody conjugates and chimeric antigen receptor T (CAR-T) cell therapy, shows potent antitumor efficacy. Glypican-3 (GPC3) is an emerging HCC therapeutic target; therefore, antibodies against GPC3 would be useful tools for developing immunotherapies for HCC. METHODS: We isolated a novel human monoclonal antibody, 32A9, by phage display technology. We determined specificity, affinity, epitope and anti-tumor activity of 32A9, and developed 32A9-based immunotherapy technologies for evaluating the potency of HCC treatment in vitro or in vivo. RESULTS: 32A9 recognized human GPC3 with potent affinity and specificity. The epitope of 32A9 was located in the region of the GPC3 protein core close to the modification sites of the HS chain and outside of the Wnt-binding site of GPC3. The 32A9 antibody significantly inhibited HCC xenograft tumor growth in vivo. We then pursued two 32A9-based immunotherapeutic strategies by constructing an immunotoxin and CAR-T cells. The 32A9 immunotoxin exhibited specific cytotoxicity to GPC3-positive cancer cells, while 32A9 CAR-T cells efficiently eliminated GPC3-positive HCC cells in vitro and caused HCC xenograft tumor regressions in vivo. CONCLUSIONS: Our study provides a rationale for 32A9 as a promising GPC3-specific antibody candidate for HCC immunotherapy

    Water content quantitatively affects metabolic rates over the course of plant ontogeny

    No full text
    Plant metabolism determines the structure and dynamics of ecological systems across many different scales. The metabolic theory of ecology quantitatively predicts the scaling of metabolic rate as a function of body size and temperature. However, the role of tissue water content has been neglected even though hydration significantly affects metabolism, and thus ecosystem structure and functioning. Here, we use a general model based on biochemical kinetics to quantify the combined effects of water content, body size and temperature on plant metabolic rates. The model was tested using a comprehensive dataset from 205 species across 10 orders of magnitude in body size from seeds to mature large trees. We show that water content significantly influences mass-specific metabolic rates as predicted by the model. The scaling exponents of whole-plant metabolic rate vs body size numerically converge onto 1.0 after water content is corrected regardless of body size or ontogenetic stage. The model provides novel insights into how water content together with body size and temperature quantitatively influence plant growth and metabolism, community dynamics and ecosystem energetics

    Defect passivation strategies in perovskites for an enhanced photovoltaic performance

    No full text
    corecore